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Abstract: A robust probabilistic classification technique, using expecta-
tion maximization of finite mixture models, is used to analyze multi-
frequency fisheries acoustic data. The number of clusters is chosen using the
Bayesian Information Criterion. Probabilities of membership to clusters are
used to classify each sample. The utility of the technique is demonstrated
using two examples: the Gulf of Alaska representing a low-diversity, well-
known system; and the Mid-Atlantic Ridge, a species-rich, relatively un-
known system.
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1. Introduction

Acoustic classifications, discriminations, and identifications of fish and zooplankton species
have traditionally integrated prior knowledge, pattern recognition, and direct sampling methods
(Horne, 2000). Species identifications have been limited to subjective classification by opera-
tors (i.e., scrutinizing; e.g., Dalen et al., 2003) or artificial intelligence (e.g., Haralabous and
Georgakarakos, 1996). The use of mean volume backscatter (MVBS) (Kang et al., 2002) and
target strength differencing (Gauthier and Horne, 2004) provide objective separations but still
assign each target or pixel to a single classification category. The use of multiple frequencies
and long-term deployments (e.g., ocean observatories) has increased the need for automated, or
semi-automated, data processing techniques, capable of efficient, robust discrimination of eco-
system components and explicit quantification of uncertainty.

Despite the widespread use of probabilistic techniques for prediction and classifica-
tion in other disciplines [e.g., since the 18th century in weather forecasting (Murphy, 1998)], the
certainty of classification has not been included in the analysis of fisheries acoustic data. The
increased availability of multi-frequency acoustic data, coupled with ever increasing computing
power, facilitates incorporation of probabilistic classification techniques from other fields [e.g.,
analysis of gene expression data (Boyle, 2005)]. We demonstrate advantages of using unsuper-
vised probabilistic clustering over subjective categorization to classify fish and invertebrates in
contrasting ecosystems—low diversity, well-known, and high diversity, relatively unknown.

2. Methodology

2.1 Approach

Probabilistic clustering techniques, such as mixture modeling, differ from partition-based clus-
tering in that each sample is assigned a probability of membership to each cluster rather than an
absolute assignment to a single cluster. Partition-based clusters can be described by their cen-
troids (MacQueen, 1967)—the mean position in sample space of all data points assigned to the

cluster. In our finite mixture modeling a set of vector models (equivalent to cluster centroids) is
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defined, using frequency-specific Sv values, which provide the “best” description of the data.
Analytic steps are optimized to allow robust analysis of large data volumes typical of fisheries
acoustic data sets (e.g., five frequencies over 250 m depth range for 1 h generate over 23.8
million data values). As samples are assigned probabilities of membership to all clusters, rules
must be defined to assign samples to specific clusters.

Applying probabilistic clustering techniques to acoustic data requires three steps:
acoustic data processing; generation of clusters and membership probabilities; and analysis of
membership probabilities, which includes defining the optimum number of clusters.

2.2 Acoustic data processing

Acoustic data were collected using Simrad EK60 echosounders operating at multiple frequen-
cies between 18 and 200 kHz. Power data were converted to volume backscattering strength (Sv,
dB re 1 m−1; cf. Simmonds and MacLennan, 2005), including a range offset of half a pulse
length and a transmission loss correction of 20*log�r�+2�r (where r=range from the trans-
ducer face and �=frequency-dependent absorption coefficient). Maximum data resolution (i.e.,
0.19 m vertical, 1 “ping” horizontal) was retained to maintain the spatial structure of the scat-
tering components. For this analysis, each sample (i.e., image pixel) was assumed to be spatially
coincident across frequencies, and no attempt was made to align samples from different trans-
ducers. The transducers used to collect the data for both examples were arranged to maximize
beam overlap within the physical constraints of transducer placement and beam angles (cf.,
Korneliussen and Ona, 2002).

2.3 Generation of clusters

Generation of clusters requires the initial selection of the number of clusters, generation of
initial vector model values, and then iterative refinement of models. Initial values for vector
models were estimated using K-means by median clustering, based on the Euclidean distance
measure between Sv values at each frequency, for each sample. Expectation maximization (EM)
for finite mixture models (Dempster et al., 1977), where model residuals are based on direct
linear distance, was used to refine the models. The expectation step is given by

P�x�µ� =
e

− �
d�D

�µd − xd�2

�µ�
e

− �
d�D

�µd� − xd�2 , �1�

and the maximization step is given by
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�
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where P�x �µ� is the probability of sample x belonging to model µ, for the set of X samples and
D frequencies. The log likelihood �LL� values were approximated using

LL = �
x�X

log max�P�x�µ�� . �3�

Vector models were iteratively refined until a level of convergence was reached. Convergence
was said to occur when the sum of the lowest residuals �i.e., those from the best fitted vector
model for each sample� stopped decreasing or a maximum of 15 iterations were completed.
Fifteen iterations was chosen as a trade-off between achieving convergence and efficiency in
processing large data sets. The posterior probabilities of cluster membership for each sample
were then reported. The sum of the probabilities of membership to all clusters is one for each

sample.
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2.4 Analysis of membership probabilities

Probabilities of cluster membership were used to generate synthetic echograms (i.e., probability
“maps”) to display spatial properties of membership probabilities. Probabilities were also used
to assign samples to clusters and as input to cluster metrics. Cluster metrics, including one
derived from the Bayesian Information Criterion (BIC) (Schwarz, 1978), were used to deter-
mine the optimum number of clusters. Mixture modeling violates the requirements for using the
BIC in statistical tests, but versions of the metric are widely acknowledged as useful in assess-
ing the fit of a set of clusters to data (e.g., Fraley and Raftery, 1998). The BIC used here is
defined as

BIC = − 2 * LL + ��M − 1� * D� * log�X * D� , �4�

where M is the number of models, D is the number of frequencies, and X is the number of
samples. BIC values will always be greater than 0, and a higher score represents a poorer de-

Fig. 1. �Color online� Echograms showing mean volume backscatter �Sv, dB re 1 m−1� data at multiple frequencies
from �a� the open ocean above the Mid-Atlantic Ridge �MAR� and �b� the Gulf of Alaska �GoA�.
scription of the data by the vector models. A gradual increase in the score with an increasing
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number of clusters is expected as membership probabilities are dissipated among clusters.
Large deviations from this upward trend are informative as they represent transitions to another
“state.” An alternative cluster metric is the percentage of samples clearly assigned to clusters
�%assign�, where sample x is clearly assigned if max�P�x �µ���2*max−1�P�x �µ��. A higher
%assign value represents a better description of the data. The trajectory of the %assign
values closely mirrors that of the BIC scores as it is based on the same underlying prob-
abilities.

Selecting the optimum number of clusters is a challenge as the strongest “natural”
clusters in acoustic data typically discriminate high Sv values, associated with surface noise and
bottom returns where present, from weak returns associated with most biological backscatter.
By generating cluster metrics (i.e., BIC or %assign) over a range of numbers of clusters, tran-
sitions within the data description can be identified. Interpreting transition points using biologi-
cal knowledge allows the optimum number of clusters to be identified for each application. An
additional benefit of sequentially clustering at an increasing number of clusters is that fidelity of
samples to clusters and relationships between clusters can be examined.

3. Examples

3.1 Data

Data for the first example were collected at 18, 38, 70, 120, and 200 kHz during a cruise over
the Mid-Atlantic Ridge (MAR) in the North Atlantic [Fig. 1(a)]. This area represents a mid-
latitude pelagic ecosystem with a diverse but poorly known epi- and mesopelagic fauna.
Echograms are dominated by amorphous horizontal layers and a variety of noise artifacts. The
shallowest samples of each ping contain high Sv values due to transducer saturation and inter-
mittent bubbles passing under the transducers. At 38 and 70 kHz vertical white stripes represent
“dropped pings” in the data record.

Data were also collected at three frequencies (18, 120, and 200 kHz) in the Gulf of
Alaska (GoA) in the northeast Pacific [Fig. 1(b)]. These data are from a continental shelf, high
latitude ecosystem with a well-known but limited pelagic fauna. The echograms contain the
same transducer saturation feature as seen in the MAR data as well as strong initial returns from
the bottom and weaker sub-bottom returns. Biological features include high intensity backscat-
ter from fish schools near the bottom and a series of horizontal layers comprised mainly of
forage fish and zooplankton (Stienessen and Wilson, 2002).

3.2 Determining the optimum number of groups

Examination of cluster metrics for the MAR data shows strong transitions at 3 and 13 clusters
[Fig. 2(a)]. As expected, 2–3 clusters separate high Sv features (i.e., bubbles and transducer
saturation) from low Sv features including biological backscatter (Table 1). This clear discrimi-

Fig. 2. The Bayesian Information Criterion �BIC� and percentage of clearly assigned samples �%assign� plotted
against number of clusters for data from �a� the Mid-Atlantic Ridge �MAR� and �b� the Gulf of Alaska �GoA�.
nation of noise features may be used to remove noise from data sets but does not provide bio-
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logically useful resolution of species or species groups. The marked degradation of metric val-
ues from 10–12 clusters followed by the strong improvement at 13 clusters suggests a transition
in the intrinsic acoustic features described by the clusters. A 13-cluster classification was used
to extract the features described beyond the transition point.

Consistent with the MAR data, the “best” description of the GoA data was obtained
using two clusters that separated high Sv features, including transducer saturation, bottom ech-
oes, and dense schools, from low Sv values [Fig. 2(b), Table 1]. After a transition in metric
values, 3–5 clusters were equivalent in their ability to describe the data, and there was very little
structure apparent in metric values above five clusters. A five-cluster classification was chosen
for the GoA data to maximize the number of well described biological categories.

3.3 Probabilities of group membership

The 13-cluster classification of the MAR data captures the transducer saturation (cluster 11),

Table 1. Vector model parameter values �Sv, dB re 1 m−1� defining sets of clusters generated from the Mid-Atlantic
Ridge �MAR� and Gulf of Alaska �GoA� data.

Data
Group

no. 18 kHz 38 kHz 70 kHz 120 kHz 200 kHz Comment

MAR- 2 1 −80.81 −74.30 −74.25 −72.12 −75.30 Non-noise features
clusters 2 −37.77 −34.31 −30.28 −28.67 −30.77 Intense noise features
MAR- 3 1 −80.82 −74.32 −74.24 −72.12 −75.29 Non-noise features
clusters 2 −52.49 −48.80 −45.30 −45.14 −49.45 Near-surface bubbles

3 9.62 12.63 15.78 22.08 24.83 Transducer saturation
MAR- 13 1 −75.34 −72.90 −74.70 −72.66 −87.24
clusters 2 −91.40 −74.60 −76.20 −73.30 −79.06

3 −67.90 −66.20 −70.24 −71.03 −73.76 Includes “fish tracks”
4 −76.34 −79.87 −72.94 −70.57 −74.14
5 −76.54 −72.23 −74.52 −83.90 −76.28
6 −61.16 −57.83 −54.80 −53.66 −58.69 Bubble margin+“biota”
7 −91.29 −87.65 −74.98 −71.01 −73.48
8 −71.67 −70.55 −81.48 −72.90 −75.66
9 −82.78 −69.58 −70.17 −68.99 −71.61

10 −47.33 −43.71 −39.54 −39.93 −43.41 Near-surface bubbles
11 9.62 12.63 15.78 22.08 24.83 Transducer saturation
12 −81.96 −81.01 −87.32 −75.56 −78.18 Includes dropped pings
13 −94.53 −76.06 −69.88 −68.09 −70.49

GoA- 2 1 −77.44 – – −80.95 −79.21 “Low Sv”
clusters 2 −51.70 – – −44.83 −42.98 “High Sv”
GoA- 5 1 −27.31 – – −38.18 −39.68 1st bottom echo+intense schools
clusters 2 7.33 – – 21.63 27.32 Transducer saturation

3 −63.11 – – −78.58 −78.16 “Fish”
4 −85.16 – – −90.21 −87.97 “Background”
5 −86.97 – – −68.19 −64.96 “Zooplankton”

GoA- 6 1 −57.63 – – −73.47 −72.68 “Large fish”
clusters 2 −22.04 – – −32.00 −34.15 1st bottom echo+

intense schools
3 −87.54 – – −68.24 −64.97 “Zooplankton”
4 −90.99 – – −91.53 −88.84 “Background”
5 −71.70 – – −84.76 −84.06 “Small fish”
6 7.33 – – 21.64 27.34 Transducer saturation
intense bubble noise at the surface (cluster 10), and the margins of the bubble features (cluster
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6; Table 1, Fig. 3). Dropped pings, along with other samples that have low to moderate Sv values
across all frequencies, are found in cluster 12. Similar patterns are evident in clusters 7 and 8.
Samples assigned to biological clusters are arranged in horizontal layers, with the three largest
clusters (3, 9, and 13) showing contiguous features comprised of high probabilities. Cluster 3
contains individual fish tracks at the same depths as the high probability layer in cluster 13.
Vector model parameter values for clusters 3 and 13 show opposite trends in backscatter inten-
sities across frequencies, with cluster 3 containing higher Sv values than cluster 13 at 18 and
38 kHz, and lower values at 120 and 200 kHz, suggesting different types of scattering compo-
nents (e.g., fish and zooplankton; Table 1). This example demonstrates the ability of objective
clustering techniques to extract biological and non-biological features within regions of interest
that could not be separated using subjective assignment of contiguous areas within echograms
to categories.

GoA probability maps contain a larger percentage of high max�P�x �µ�� values, which
are more spatially contiguous than those in the MAR clusters (compare Fig. 3 and 4). This
concentration of high probability values is attributed to both statistical and biological factors.
The GoA data are partitioned into 5 rather than 13 clusters resulting in a higher mean
max�P�x �µ�� value (all samples: GoA 5 clusters=0.974, GoA 13 clusters=0.924). However,
spatially consistent backscatter intensity patterns, attributed to single species aggregations, also
resulted in higher mean max�P�x �µ�� for clearly assigned samples in the GoA clusters com-
pared to those in the MAR data (clearly assigned samples: GoA 5 clusters=0.989, GoA 13

Fig. 3. Probability maps of cluster membership for the 13-cluster classification of Mid-Atlantic Ridge �MAR� data.
Notes: Cluster 11 is not shown but is equivalent to cluster 2 shown in Fig. 4. The palest gray tone indicates a
membership probability of zero.
clusters=0.963, MAR 5 clusters=0.936, MAR 13 clusters=0.927). The presence of spatially
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coherent patterns in probability maps from both examples, when no spatial information was
used in the clustering process, supports this approach to multi-frequency data classification.

The use of five clusters for the GoA data captures transducer saturation (cluster 2),
high intensity backscatter from fish schools and the bottom (cluster 1), and two clusters of
horizontally layered biological backscatter with sub-bottom returns (clusters 3 and 5; Fig. 4).
The relative magnitudes of vector model Sv values from cluster 3 (higher at 18 kHz and equally
low at 120 and 200 kHz) match those from cluster 1 but at lower intensities (Table 1).
Frequency-dependent Sv values from cluster 5 are different, lower at 18 kHz and then higher at
120 and 200 kHz. Cluster 4 has relatively low Sv values at all three frequencies, which is inter-
preted as “empty water” or background backscatter. Results from acoustic and trawl surveys in
the GoA (Stienessen and Wilson, 2002) support the biological interpretation of cluster 1 as
dense schools of adult walleye pollock, cluster 3 as a mixture of fish at lower densities/sizes
(adult and age 0 walleye pollock plus capelin), and cluster 5 as zooplankton (mainly euphausi-
ids). Increasing the number of clusters to six primarily divides cluster 3 into two clusters (1 and
5), with similar relative vector Sv values but at different intensities (Table 1). Inspection of
probability maps in conjunction with echograms suggests that this division potentially sepa-
rates samples containing small from large fish. The use of six clusters to categorize GoA data
provides a poorer mathematical description of the data, but may be more appropriate when the
objective is to estimate adult walleye pollock biomass independent of other ecosystem compo-
nents.

4. Future work

The classification of backscatter from contrasting ecosystems demonstrates the potential of
probabilistic clustering to analyze multi-frequency fisheries acoustic data. Future work will
address: the type of mathematical model used in the EM process, the choice of distance mea-
sures to distinguish clusters (including the incorporation of depth and spatial location), and the
choice of metrics used to select the optimum number of clusters. Specific issues include the
spatial coincidence of samples within transducer beams (Korneliussen and Ona, 2002), and the
frequency-dependent loss of signal with depth, which affects choice of EM model. Investiga-
tions of spatial and temporal cluster dynamics, including their stability in contrasting ecosys-
tems, will follow refinement of the methodology, with the ultimate goal of automated, robust

Fig. 4. Probability maps of cluster membership for the five-cluster classification of Gulf of Alaska �GoA� data.
Notes: Cluster 2 is drawn on a different depth scale. The palest gray tone indicates a membership probability of zero.
discrimination of ecosystem components in a wide variety of environments.
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